

Analysis of Fuel Cell Powertrain Implications Using ADVISOR

Keith Wipke, Kristina Haraldsson, Tony Markel National Renewable Energy Laboratory Golden, Colorado

> AVL International User Meeting, 2003 October 15, 2003

Outline

- Background on ADVISOR
- Fuel Cell System Model Overview
- Definition of Water Balance
- Vehicle Specifications
- Results from Simulations
- Conclusions

Background on ADVISOR

- ADVISOR = ADvanced Vehicle SimulatOR
 - simulates conventional, electric, or hybrid vehicles (series, parallel, or fuel cell)
- ADVISOR was created in 1994 at NREL to support

DOE Hybrid Program

- Distributed on web by NREL from 1994-2002
- Downloaded by over 7000 people around world
- Held 2 ADVISOR User Conferences
- In 2003, ADVISOR licensed to AVL for commercial release

About the Team Systems

Analysis

□ Fiat■ Eaton Corporation

■ Ricardo. Inc.

☐ Hitachi Ltd.

■ Nissan Motor Company

■ Ford Motor Company

□ General Motors

■ DaimlerChrysler Corporation

■ Siemens Automotive Systems

■ Hyundai Motor Company

■ Visteon

■ Delphi
■ Volvo

■ Honda

- Mathworks
- FEV Engine Technology
- Renault
- ☐ Mitsubishi Motors Corporation
- □ Flowmaster
- AVL
- Denso Corporation
- Allison Transmission

Legend includes organizations with 8 or more users since v2.0

As of 9/20/02

Basic Structure (models) In the Matlab/Simulink Environment

Basic Structure (database) How the Data/Models are Pulled into the GUI

Block Diagram

GUI

Data Files

Three Main ADVISOR GUI Screens

Vehicle Input

Simulation Setup

Results

Range of Fuel Cell Model Complexity in ADVISOR

More Detail

*** User-defined model ***

- · configurable subsystem structure
- ability to link to fuel cell models in other tools (e.g. Saber, Simplorer,...)

Model 2

- Springer et. al. fuel cell model
- thermodynamic library
- balance of plant components
- water transport in MEA

Model 1

- parametric polarization curve
- system thermal model
- balance of plant components
- variable operating pressure

Less Detail

Simple Polarization Curve

- · defined current and voltage
- simplified balance of plant

Net Power vs. Efficiency

- single curve
- scalability

Model 1 Fuel Cell System Model Used for Study

- Semi-empirical, transient
- Thermal model for ADVISOR to evaluate:
 - -Hot & cold start vehicle fuel economy
 - -Power limitations due to temperature
 - -Water balance for reactant humidification
- Polarization curve based on Honeywell stack
- Compressor data (map from Opcon Autorotor)

Example of ADVISOR Input: the FC Model Load File fc vt vehicle r16 in Auto-Size Vehicle Input Scale Drivetrain Config fuel_cell peak mass max version (kg) eff Vehicle VEH_SUV_RWD 1202 Fuel Converter 0.5 fcell 🔻 FC_VT Exhaust Aftertreat EX_FUELCELL_NUL -ESS_LI7_temp 320 68 30 **Fuel Converter Operation - VT Model** ess 2 options 60 293 117 0.9 155 MC AC83 313 motor 2 options 333 353 starter options 55 go options FC System Efficiency [%] TX 1SPD 50 trans 2 options clutch/torque conver TC DUMMY WH_SMCAR_REGE < 0 ACC HYBRID acc elec options PTC FUELCELL 136 Cargo 40 Calculated 2073 3D FUELCE override mas Save Help 35 10 20 30 40 50 60 Continue Back Power [kW]

Definition of Water Balance

• Neutral water balance:

Water needed for humidification

=

Water produced at the cathode

Water condensed out of the exhaust

FC Vehicle Design Requirement

Under no conditions have water deficiency

Condenser or water reservoir **size**needs to be large enough

for both **cold** and **hot** start conditions in drive cycles

In this study we varied:

- System parameters
 - condenser size, rel. humidity requirements of the cathode inlet gas, ambient pressure (elevation)
- Vehicle parameters
 - cold and hot start, drive cycles

Baseline Components

Based on a mid-size SUV similar to Jeep Grand Cherokee

Component	Description
Fuel Converter	50 kW pressurized fuel cell system, Virginia Tech
Motor/Controller	117 kW AC induction motor developed by Virginia Power Technologies
Energy Storage System	12 Ah Li-ion battery pack

Example of Heat Rejected In Condenser During Cold and Hot Start in an Aggressive Cycle (US06)

Cold start: takes up to 400s to reach full functionality of the condenser

Example of Evaluating Water Balance on US06 for Hot vs. Cold Start

NREL, CEN

Cold start: water balance positive as condenser begins to become effective

Water Balance Sensitivity to the Cathode *Inlet Humidity* Requirements

US06 Hot start

One reason for significant research in high-temperature membranes

Positive water balance at low relative humidity requirements, RH=30%

Water Balance Sensitivity to the Condenser Area (US06 cycle)

US06 Hot start

Higher
temperature
membranes would
also help decrease
condenser area
requirements

Relatively large condenser area required for positive water balance on hot US06 (0.65 m²⁾

Sensitivity of the Condenser Area for Cold & Hot Start (US06 Cycle)

Lower water balance sensitivity to condenser area at cold start than hot start

Cold/Hot Start and Condenser Area Sensitivities Different on 2 Cycles: UDDS and US06 Cycles

sensitive to cold/hot start

US06:

sensitive to size of condenser

NREL, CENTER FOR TRANSPO

Maximum *Heat Generated/Rejected* at Different Ambient Pressures (Elevation), Temperatures, and Drive Cycles

Values are normalized with respect to the 5c, 0m HWFET case. Ambient conditions: RH=30%.

Ambient pressure (elevation) has larger effect on stack heat generation than ambient temperature, but it depends on the drive cycle

Water Balance Affected By Ambient Pressure and Temperature (HWFET Cycle)

Fuel Economy Decreases with Elevation and Cold Start (HWFET Cycle)

Fuel economy is reduced (~15%) at higher elevation

Conclusions

- Demonstrated ADVISOR fuel cell hybrid vehicle simulation tool with thermal and transient properties
- Drive Cycle: Aggressive (US06)
 - water balance more sensitive to condenser area than cold/hot start
 - need a large condenser to ensure positive water balance for both cold and hot start conditions
 - or, if a small condenser is used, a large water reservoir will be necessary
- Drive Cycle: Moderate (UDDS)
 - water balance more sensitive to cold/hot start than condenser area

Conclusions (cont.)

- Important to look on the water balance during the entire cycle rather than just the average value
 - However, properly sized H20 reservoir balances out swings
- Water balance is favored by low relative humidity requirements of the cathode inlet gas
 - Supports development of high-temp membranes
- Ambient pressure (elevation) has a larger effect on stack heat generation than ambient temperature
- Water balance improves by ~14% at higher elevation for highway driving
- Fuel economy reduced by ~15% at higher elevation for highway driving

